Bravily

GeNi」s

CE DECLARATION OF CONFORMITY

Manufacturer: FAAC S.p.A.
Address: Via Calari, 10-40069 Zola Predosa BOLOGNA - ITALY
Declares that: BRAIN 17 remote Programmer
conforms to the essential safety requirements of the following EEC directives
2006/95/EC Low Voltage Directive
2004/108/EC Electromagnetic Compatibility Directive
Additional note:
this product underwent tests in a typical uniform configuration (all products manufactured by FAAC S.p.A.).

Bologna, january the $1^{\text {st }} 2013$

The Managing Director
A. Marcellan

WARNINGS FOR THE INSTALLER

GENERAL SAFETY OBLIGATIONS

1. ATTENTION! To ensure the safety of people, it is important that you read all the following instructions. Incorrect installation or incorrect use of the product could cause serious harm to people.
2. Carefully read the instructions before beginning to install the product.
3. Donotleave packing materials(plastic, polystyrene, etc.) within reach of children as such materials are potential sources of danger.
4. Store the instructions for future reference.
5. This product was designed and built strictly for the use indicated in this documentation. Any other use, not expressly indicated here, could compromise the good condition/operation of the product and/or be a source of danger.
6. FAACS.p.A. declines all liability caused byimproper use or use other than that for which the automated system was intended.
7. Do not install the equipment in an explosive atmosphere: the presence of inflammable gas or fumes is a serious danger to safety.
8. FAAC S.p.A. is not responsible for failure to observe Good Technique in the construction of the closing elements to be motorised, or for any deformation that may occur during use.
9. The installation must conform to Standards EN 12453 and EN 12445. For non-EU countries, to obtain an adequate level of safety, the Standards mentioned above must be observed, in addition to national legal regulations.
10. Before attempting any job on the system, cut out electrical power and disconnect the batteries if present.
11. Themainspowersupply ofthe automated system must be fitted with an all-pole switch with contact opening distance of 3 mm or greater. Use of a 6A thermal breaker with all-pole circuit break is recommended.
12. Make sure that adifferential switch withthreshold of 0.03 A is fitted upstream of the system.
13. Make sure that the earthing system is perfectly constructed, and connect metal parts of the means of the closure to it.
14. Theautomatedsystemsthatfeature abuilt-inanticrushing safety device in any case require a functional check in accordance with the provisions of the Standards indicated at point 9.
15. The safety devices (EN 12978 standard) protect any danger areas against mechanical movement Risks, such as crushing, dragging, shearing, lifting.
16. Use of at least one indicator-light (e.g.: flashing lamp) is recommended for every system, as well as a warning sign adequately secured.
17. FAAC S.p.A. declines all liability as concerns safety and efficient operation of the automated system, if system components not produced by FAAC S.p.A. are used.
18. For maintenance, strictly use original parts by FAAC S.p.A.
19. Do not in any way modify the components of the automated system.
20. The installer shall provide the User with all information concerning manual operation of the system in case of an emergency.
21. Do not allow children or adults to stay near the product while it is operating.
22. Keep radio controls or other pulse generators away from children, to prevent the automated system from being activated involuntarily.
23. Transit is allowed only when the automation is fully open.
24. The User must not attempt any kind of repair or direct action whatever and contact qualified personnel only.
25. Anything not expressly specified inthese instructions is not permitted.

Important for the safety of persons and for the good condition of the automated system.

(1)

Notes on the characteristics and operation of the product.
CE DECLARATION OF CONFORMITY 2
WARNINGS FOR THE INSTALLER 3

1. TECHNICAL SPECIFICATIONS 5
2. PREPARING FOR INSTALLATION 6
3. BOARD LAYOUT 6
4. ELECTRICAL CONNECTIONS 8
4.1 J1 - MAINS PRIMARY POWER SUPPLY 8
4.2 J 2 - MOTORS AND FLASHING LAMP 8
4.3 J3 - LOW-VOLTAGE ACCESSORIES - INPUTSIOUTPUTS 9
4.4 J12 - PROGRAMMABLE OUTPUTS - ELECTRIC LOCKS 10
4.5 J12 -J6 - LIMIT SWITCH AND TIMECODER 10
4.6 J10 - BUS G-WAY ACCESSORIES 11
4.7 J5 - RQFZ MODULE RAPID CONNECTOR 14
4.8 TRADITIONAL PHOTOCELLS 15
5. PROGRAMMING 18
5.1 BASIC PROGRAMMING FUNCTIONS 19
5.2 ADVANCED PROGRAMMING FUNCTIONS 24
5.3 BUS G-WAY DEVICE INSTALLATION 27
5.3.1 BUS G-WAY DEVICE ENTRY 27
5.4 TIME LEARNING - SETUP. 29
5.5 TESTING THE AUTOMATED SYSTEM 30
6. MEMORISING THE RADIO CODE 31
6.1 MEMORISING THE JLC RADIO CONTROLS 31
6.2 MEMORISING RC RADIO CONTROLS (ONLY 433 MHZ) 32
6.2.1 REMOTE MEMORISATION OF RC RADIO CONTROLS 33
6.3 DELETING THE RADIO CONTROLS 33
7. START-UP 34
7.1 CHECKING THE LEDs 34
8. SIGNALLING ERRORS AND ALARMS 35
8.1 ERRORS 35
8.2 ALARMS 36
9. TROUBLESHOOTING 36
10. MANAGING THE CONFIGURATION FILE - J8 USB 37
11. FUNCTION LOGICS 40

CONTROL BOARD BRAIN 17

We thank you for having chosen one of our products. GENIUS is certain that from it you will obtain all the performance you require. All our products are the result of years of experience in the field of automated systems.

1. TECHNICAL SPECIFICATIONS

PURPOSE: this electronic control board has been designed and built to control swing-leaf and/or sliding gates for vehicle and pedestrian access control.
During programming you can choose between different function logics.
2 programming levels are available from the board (BASIC and ADVANCED), using buttons and LCD display.

Tab. Technical specifications

Mains power supply	With power supply switching $230 \mathrm{~V} \sim \pm 15 \% ; 50 / 60 \mathrm{~Hz}$
	Stand By $=4 \mathrm{~W} ; \mathrm{MAX}$ about 800 W
MAX load for motors	800 W
Accessories power supply	$24 \mathrm{~V}=-$
MAX. accessories current	+24 V MAX 500 mA
	LOCK (GENIUS) $12 \mathrm{~V} \sim / 24 \mathrm{~V}=-$
Operating ambient temperature	from $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Power supply safety fuses	F1 = 2,5 A
Work time	Self-learned through SETUP - (Max 4 min and 10 sec)
Pause time	Programmable (from 0 to 9 min and 50 sec) 500 mA
Motor power	Programmable on 50 levels
Connector inputs	RQFZ433/868 Module, USB
Terminal board inputs	Mains power supply, BUS G-WAY, OPEN-A, OPEN-B, STOP, Photocells during closing, Photocells during ope- ning, Limit switch
Terminal board outputs	Flashing lamp, Motors, Electric lock (LOCK), W.L. (pro- grammable), Accessories power supply, failsafe negative
(TX FSW)	

2. PREPARING FOR INSTALLATION

For safety reasons, it is important for people to carefully follow all the warnings and instructions contained in this manual. Incorrect installation or incorrect use of the product can cause serious harm to people. Before proceeding with product installation, carefully read the entire manual. Keep these instructions for further reference.
Always cut off the electrical power before carrying out any work on the control unit (connections, maintenance).
Always separate the power cables from the control and safety cables (button, receiver, BUS G-WAY encoder, photocells, etc.). Avoid any electrical disturbance using separate sheathing or a shielded cable (with shield connected to the earth).

- Ensure that upstream of the system there is a suitable magnetothermic differential switch with omnipolar cut-off, as provided for in current safety regulations.
- Check for the presence of an adequate earthing system.

3. BOARD LAYOUT

LCD	Signalling/Programming display
SW1	"+/R1" Programming button
SW2	"-IR2" Programming button
SW3	"F" Programming button
DL1	"FCC2" Input status control LED
DL2	"FCA2" Input status control LED
DL3	"FCC1" Input status control LED
DL4	"FCA1" Input status control LED
DL5	"FSW OP" Input status control LED
DL6	"FSW CL" Input status control LED
DL7	"STOP" Input status control LED
DL8	"OP-B" Input status control LED
DL9	"OP-A" Input status control LED
DL10	"USB" Signalling LED
DL11	"RADIO1" Signalling LED
DL12	"RADIO2" Signalling LED
DL13	"ERROR" Error/alarm signalling LED
DL14	"BUS MON" BUS G-WAY diagnostic signalling

DL15	Device signalling LED to BUS G-WAY ACTIVE
DL16	Microprocessor power presence LED
DL17	+24V-=- Accessories power supply presence LED
J1	230V~ Power supply connector
J2	Motors and flashing lamp power supply connector
J3	Input/Output connector
J5	RQFZ433/RQFZ868 receiver module con- nector
	Channel 1 - OPEN A (Total Opening)
	Channel 2 - OPEN B (Partial Opening)
J6	Limit switch input connector
$\mathbf{J 8}$	HOST USB-A for Mass Memories connector
J10	BUS G-WAY device connector
J11	W.L. (programmable) and Electric lock (LOCK) output connector
F1	Motor and power supply safety fuse

4. ELECTRICAL CONNECTIONS

4.1 J1 - MAINS PRIMARY POWER SUPPLY

$\mathbf{P E}$	Earthing Connection	For correct operation, you must con- nect the switching power supply to the system's earthing conductor. Ensure
\mathbf{N}	Power Supply Connection $230 \mathrm{~V} \sim \pm 15 \%$ Neutral	
L	Power Supply Connection $230 \mathrm{~V} \sim \pm 15 \%$ Line	

4.2 J2-MOTORS AND FLASHING LAMP

1	M1 - COM	Common contact motor 1	M1= first leaf when opening or single leaf M2 = second leaf when opening - CAN- NOT be used for single leaf
2	M1-OP	Opening phase motor 1	
3	M1-CL	Closing phase motor 1	
4	M2-COM	Common contact motor 2	To verify correct wiring and direction of motor rotation, (see 5.4 TIME LEARNING - SETUP)
5	M2-OP	Opening phase motor 2	
6	M2-CL	Closing phase motor 2	
7	LAMP	Flashing lamp connection (MAX 60 W)	

4.3 J3-LOW-VOLTAGE ACCESSORIES - INPUTS/OUTPUTS

9	OP-A	OPEN A contact - N.O. TOTAL opening
10	OP-B	OPEN B contact - N.O. PARTIAL opening

Connect a button or other pulse generator which, by closing a contact, commands TOTAL opening of both leaves.
Connect a button or other pulse generator which, by closing a contact, commands the PARTIAL opening.
> on 2-motor systems = 100\% of leaf 1 opening; on 1-motor systems = 50\% of leaf 1 opening.

When a logic requiring a CLOSE (\square, L_{-}) input is selected, the, OPEN B input automatically becomes CLOSE - N.O. (leaves closing command).

To install more than one OPEN A or OPEN B pulse generator, connect the N.O. contacts in parallel (see related Fig.)

11	STOP	STOP contact - N.C.	Connect a button or other pulse generator which, by opening a contact, stops movement of the automated system.

To install more than one STOP device, connect the N.C. contacts in series (see related Fig.). If stop devices are NOT connected, jumper the terminals STOP and GND.

12	FSWC	FSW CL contact - N.C. closing safety	Connect a photocell or other device which, by opening a con- tact, reverses the movement of the automated system during
$\mathbf{1 3}$	FSWOP	FSW OP contact - N.C. opening safety	opening (FSW OP) or during closing (FSW CL).

To install more than one safety device, connect the N.C. contacts in series (see related Fig.). If safety devices are NOT connected, jumper terminals FSW CL and FSW OP and GND if the FAIL-SAFE safety is not active; otherwise jumper FSW CL and FSW OP and OUT1 (FAIL-SAFE).

$\frac{14}{15}$		
$\mathbf{1 5}$	-	GND Accessories power supply negative
$\mathbf{1 6}$		
$\mathbf{1 7}$	+	+24 Accessories power supply positive (MAX. load $=500 \mathrm{~mA})$
19	TXFSW	FAILSAFE negative

Fig. e.g.: Connecting 2 N.O. contacts in parallel.

Fig. e.g.: Connecting 2 N.C. contacts in series.

4.4 J12 - PROGRAMMABLE OUTPUTS - ELECTRIC LOCKS

20	W.L.	$24 \mathrm{~V}=$ - (Open Collector) programmable using the function \leftrightharpoons 甲 (advanced programming); default: indicator light	
21	LOCK	Electric lock ($12 \mathrm{~V} \sim$ or $24 \mathrm{~V}=-$) operated 2 sec before opening of leaf 1	When BUS G-WAY encoder is disabled, the electric lock is operated before each opening (in whatever position the stopped leaf is in). When BUS G-WAY encoder is enabled, the electric lock is operated only before opening the closed leaf.

4.5 J12-J6 - LIMIT SWITCH AND TIMECODER

The limit switch contacts FCC1, FCA1, FCC2, FCA2 are all NC contacts.
They are programmable using the functions FF and F[(basic programming) ; default: disabled.
If no limit switches are used, you DO NOT need to jumper the limit switch contacts FCC1, FCA1, FCC2, FCA2.

You can however use a single TIMECODER (only for single leaf); in this case, you do not need to jumper the unused inputs to the earth.

Fig. Limit switch and TIMECODER connections (maximum configuration: (3).

4.6 J10 - BUS G-WAY ACCESSORIES

This board features a BUSG-WAY circuit for facilitating connection to the safety devices of a high number of auxiliary BUS G-WAY (MAX 16 pairs of photocells), encoder and control devices.

If no BUS G-WAY accessories are used, leave the BUS G-WAY connector free.

BUS G-WAY photocells

Before connecting the photocells, arrange them for the duly address assignment, depending on their position and operation mode:

Photocells during closing: trip only during the closing of the automated system - suitable for protecting the closing area from risk of impact.
Photocells during opening: trip only during the opening of the automated system - suitable for protecting the opening area from risk of impact.
Photocells during opening/closing: trip during both the opening and closing - suitable for protecting the entire movement area from risk of impact. Pulse generators: used as pulse generators for opening the automated system.

Address assignment of BUS G-WAY photocells
To assign the address to each pair of photocells, you must set the Dip-Switches (DS1) located on the transmitter and corresponding receiver.

8 The transmitter and receiver of a pair of photocells must have the same DIP-SWITCH setting.

Two or more pairs of photocells must not have the same DIP-SWITCH setting.

Dip1	Dip2	Dip3	Dip4	TYPE OF PHOTOCELLS
OFF	OFF	OFF	OFF	OPENING (max 6 pairs)
OFF	OFF	OFF	ON	
OFF	OFF	ON	OFF	
OFF	OFF	ON	ON	
OFF	ON	ON	OFF	
OFF	ON	ON	ON	
ON	OFF	OFF	OFF	CLOSING (max 7 pairs)
ON	OFF	OFF	ON	
ON	OFF	ON	OFF	
ON	OFF	ON	ON	
ON	ON	OFF	OFF	
ON	ON	OFF	ON	
ON	ON	ON	OFF	
OFF	ON	OFF	OFF	OPENING and CLOSING (max 2 pairs)
OFF	ON	OFF	ON	
ON	ON	ON	ON	OPEN PULSE (1 pair)

Connection of BUS G-WAY photocells
For connecting you have to use two cables without polarity (see the specific device instructions).

BUS G-WAY encoder connection is done using the bi-polar cables supplied with.

Connection - Address assignment of BUS G-WAY Encoder

he polarity of the BUS G-WAY line connection determines the correspondence of the encoder to one leaf or the other.
pay careful attention to the indications of the status LED located on the body of each encoder.

LEAF 1 opens first and closes last.
 motor stopped, LED DI 1 is on.

On leaf 1 check that, with the motor stopped, LED DL1 and DL2 are on.

2 LED on.

1 LED on.

Note: by inverting the encoder wires, this will switch around the encoder associated with leaf 1 and the encoder associated with leaf 2 and vice versa.

Cable Inversion

Encoder Leaf 2

Tab. BUS G-WAY Encoder LEDs Status

LED	ON	FLASHING	OFF
DL1	Power present Communication present	Power present Communication absent	Power absent Communication absent
	DL1 must always be on to confirm correct encoder/board connection.		
DL2	Leaf 1	I	Leaf 2
	DL2 indicates the leaf on which the encoder is installed; it must be on for leaf 1 and off for leaf 2.		
	Stationary leaf	Leaf in motion	Stationary leaf
DL3	DL3 indicates pulse reading during leaf movement using steady flashing. In stationary status of the leaf, the DL3 can be either on or off.		

4.7 J5-RQFZMODULERAPIDCONNECTOR

Plug-in rapid connector dedicated to RQFZ2-channel decoding module.

ALWAYS cut off power to the board BEFORE inserting/removing the module.

4.8 TRADITIONAL PHOTOCELLS

This board lets you use traditional photocells (contact N.C. with relay).
Before connecting the photocells, it is best to identify the operating type, which depends on the movement area they have to protect:

Closing photocells: trip only during the automated system closing - suitable for protecting the closing area from risk of impact.

Opening photocells: trip only during the automated system opening - suitable for protecting the opening area from risk of impact.
Photocells for opening/closing: trip during both the opening and closing - suitable for protecting the entire movement area from risk of impact.

Pulse generators: used as pulse generators for opening the automated system.

Fail Safe function

This function lets you monitor the correct alignment and operation of the photocells before each movement. To enable the Fail Safe function, enter the ADVANCED Programming and set the $5 \mathrm{P}=0 \mid$ function.

With Fail Safe disabled: connect the transmitter (TX) power supply to terminals 15 and 18 of J3.

With Fail Safe enabled: connect the power supply negative of the transmitters (TX) to TXFSW. Then jumper the unused safety inputs with TXFSW.

Hereafter are provided the drawings for some connection examples.

No safety device and no stop device FAIL SAFE enabled

One closing safety device, one opening safety device, one STOP device.
FAIL SAFE disabled

One pair of closing photocells.
FAIL SAFE disabled

One pair of closing photocells.
FAIL SAFE enabled

One closing safety device, one opening safety device, one STOP device.
FAIL SAFE enabled

One pair of closing photocells, one pair of opening photocells and one pair for opening/ closing.
FAIL SAFE disabled

Two pairs of closing photocells.

FAIL SAFE disabled

One pair of opening photocells.
FAIL SAFE disabled

One pair of closing photocells and one for opening/closing.
FAIL SAFE disabled

5. PROGRAMMING

Programming is divided in two levels:

- BASIC programming
- ADVANCED programming

The programming phases are (see Tab.):

1. to access PROGRAMMING;
2. to show the set values and modify them, if you want. Changing the values is effective immediately, while the final memorisation must be carried out upon exiting programming (■レ).
3. exit the programming by using Líl function. Select \unlhd to SAVE the configuration you just performed, otherwise select $\sqcap \square$ to EXIT WITHOUT SAVING any changes.

You can EXIT programming at anytime:

- press and hold \mathbf{F} and then also - to switch directly to 5 .

Tab. BASIC programming phases.

1	2			3	
PRESS AND HOLD F: THE FIRST FUNCTION APPEARS $\1	RELEASE F: THE FUNCTION VALUE IS DISPLAYED	USING $\boldsymbol{+} \mathrm{OR}^{2}$, SCROLL THE AVAlLAbLe Values UNTLL THE DESIRED ONE +/R1 -/R2 \square	PRESS F: TO MOVE TO THE NEXT FUNCTION $\1	function 5 L (LAST function) select ป to save the programming OTHERWISE selectina to ext the programming WTHOUT SAVING	PRESS THE BUTTON F to confirm; AT THE END THE DISPLAY RETURNS TO VISUALIZE THE AUTOMATED SYSTEM STATUS

Tab. ADVANCED programming phases

1	2			3	
PRESS AND HOLD F And then also +: THE FIRST FUNCTION APPEARS $\1	RELEASE THE BUTTONS: THE FUNCTION Value is DISPLAYED	USING $\boldsymbol{+}$ OR SCROLL THE AVAlLABLE VaLUES UNTIL THE THE dESIRED ONE +/R1 -/R2	PRESS F: TO MOVE TO THE NEXT FUNCTION \mathbb{Z}^{1}	function 5 L (LAST FUNCTION) select ป to save THE PROGRAMMING OTHERWISE Select חID to ext the programming WTHOUT SAVING	PRESS THE BUTTON F TO CONFIRM; AT THE END THE DISPLAY RETURNS TO VISUALIZE THE AUTOMATED SYSTEM STATUS

5.1 BASIC PROGRAMMING FUNCTIONS

Display	Basic Function	Default
口1F	DEFAULT: ป indicates that all the set values correspond to the default values. กロ indicates that one or more set values are different from the default. Set \bigsqcup if you want to restore the default settings.	-
$1 _1$	FUNCTION LOGICS: E Semi-automatic Semi-automatic Step-by-Step Automatic Step-by-Step Safety Devices Automatic Automatic Step-by-Step Semi-automatic "b" Dead-man When a logic requiring a CLOSE $(\square, \bar{\square})$, input is selected, the OPEN B inputs will automatically be changed to CLOSE. , if you choose a logic that does not require the use of CLOSE inputs, these inputs will change to OPEN B. For a description of how the logics operate, see the related paragraph.	■

Display	Basic Function	Default
Б曰	PAUSE A and PAUSE B TIME（visualised only with Automatic logics） Is the pause time in a TOTAL opening and PARTIAL opening（it is enabled only if a logic with pause time has been selected）． Adjustable from to sec，in 1－second steps． Next the value 59，the viewing changes to minutes and tenths of a second （separated by a decimal point）and time is adjusted in 10 －second steps up to the maximum value of $\square .5$ minutes． e．g．：if the display shows コ．コ，the time is 2 min and 50 sec．	二_II_\|
111	NR．OF MOTORS： You can select the number of motors present in the system： $\begin{aligned} & =1 \text { motor } \\ & =2 \text { motors } \end{aligned}$ If the SETUP is performed with only one motor，and later two mo－ tors are used，the board will signal error ${ }^{14}$－configuration error， which can be deleted by repeating the SETUP with two motors or by returning to one motor． If a SETUP is performed with two motors and later only one is used， the board will not signal an error．Only the motor connected to input M1 will move．	■ （swing－ leaf）

Display	Basic Function You can adjust the maximum power of motor 1, which is the same during both opening and closing.	Default

Display	Basic Function	LIMIT SWITCH WHEN CLOSING Lets you set or disable use of the closing limit switch on swing-leaves.
After having changed the value of this function, SETUP is required:		
the card will signal error (configuration error) until the SETUP is		
performain or until the previous value is restored.		

Display	Basic Function	Default	
「1二	MOTOR 2 dead－man DRIVE mode（visualised only with the function ワワ＝コ） ＋／R1 OPENS（visualising $\square^{-} \vdash^{-}$）until the button is held down -/R2 \square CLOSES（visualising ᄃL ）until the button is held down	－	
$F \\|$	MOTOR 1 dead－man DRIVE mode ＋／R1 OPENS（visualising $\left.\square^{-}\right\|^{-}$）until the button is held down -/R2 CLOSES（visualising ᄃ－）until the button is held down	－	
－1	WORK TIME LEARNING（SETUP）： See the related paragraph．	－－	
■	AUTOMATED SYSTEM STATUS： You can exit programming，choosing whether or not to save the configuration you just performed． 1．set the choice： ப to SAVE and EXIT the programming Пロ to EXIT the programming WITHOUT SAVING 2．press the button \mathbf{F} to confirm；at the end the display returns to visualize the automated system status： \square ＝CLOSED ＝OPEN \square ＝Stationary then＂OPENS＂ ＝Stationary then＂CLOSES＂ ＝In＂PAUSE＂ \square ＝during Opening $=$ during Closing ＝FAIL SAFE in progress ＝checkingBUSG－WAYdevicesinprogress ＝Pre－flash then＂OPENS＂ ＝Pre－flash then＂CLOSES＂ WARNING If power is lost to the board prior to confirmation（step 2．），all changes made will be lost． You can EXIT programming at any time：press and hold \mathbf{F} and then also－to switch directly to Бし． －IR2	늘	

5．2 ADVANCED PROGRAMMING FUNCTIONS

Display	Advanced Function	Default
■	REVERSE STROKE WHEN OPENING and RAM STROKE WHEN CLOSING （NOT displayed if function $F[=1$ ）： Lets you enable／disable the reverse stroke and ram stroke on swing－leaves． The reverse stroke facilitates unlatching of the electric lock．When the auto－ matic system is closed，before starting to open，the motors give a brief push to close． The ram stroke facilitates latching of the electric lock by activating the motors at maximum power during final closing． 〕＝enabled（for 2 sec ） คロ＝disabled In case of systems with an absolute encoder，to enable this function a setup must be performed using the automatic leaf stop on the mechanical contact point．	「1ロ｜
［1］	DELAY FOR OPENING LEAF（visualised only with the function $\upharpoonright_{\mid \sqcap}$ You can enable／disable the delay for starting leaf 2 opening with respect to leaf 1，in order to avoid overlapping of the two leaves． $\begin{aligned} & \text { U }=\text { enabled (for } 2 \mathrm{sec} \text {) } \\ & \cap \square=\text { disabled } \end{aligned}$!
1	LEAF 1 DECELERATION： You can adjust the deceleration space as a percentage of the total travel of leaf 1. ```Adjustable from to %, in 1% steps. = no deceleration = minimum deceleration space = maximum deceleration space```	二!\|
1二	 You can adjust the deceleration space as a percentage of the total travel of leaf 2. Adjustable from to $\%$ ，in 1% steps． ＝no deceleration \qquad ＝minimum deceleration space \qquad ＝maximum deceleration space	■!\|

Display	Advanced Function	Default	
F"	PRE－FLASHING： You can enable／disable the pre－flashing．Pre－flashing duration $=3 \mathrm{sec}$ ． \qquad ＝enabled before each movement ח口＝disabled	「1I	
E	ANTI－CRUSHING SENSITIVITY（visualised only with the function E® ＝ப）： Varying this function varies the amount of time after which，in case of obsta－ cle，the board commands reversal of the leaves，or it will command a stop if the leaves are in the contact point search space（see the parameter $\stackrel{\Gamma}{ }{ }^{\text {I }}$ ）． The fourth consecutive obstacle detected in the same direction and position will be defined as a contact point and the leaf will stop in that position． $=$ minimum sensitivity（maximum time before reversal） $=$ maximum sensitivity（minimum time before reversal）	■!	
1—口	MECHANICAL STOP SEARCH ANGLE（displayed only if function $E \square=$ and functions $F \sqsubset$ and $F F=\square \square$ or $\left.=\square \square^{\prime}\right)$ ： You can adjust the contact point search angle within which the board will stop movement without reversing，if it encounters an obstacle or the contact point． Adjustable in two modes： $\begin{aligned} & \text { = Low contact point search space (about } 1 \text { degree) } \\ & =\text { High contact point search space (about } 4 \text { degree) } \end{aligned}$	1——	
Б,	OUTPUT WL： You can set the output W．L．（open collector N．O．）in one of the following functions： 00 ＝INDICATOR LIGHT（OFF＝closed，ON＝during opening and open／ pause，FLASHING＝during closing） 미 ＝COURTESY LIGHT（fixed time 90 seconds）	[\|	

Display	Advanced Function	Default	
■	FAIL SAFE: You can enable function FAIL SAFE to control correct operation of the photocells. \square = FAIL SAFE disabled [1] = FAIL SAFE enabled	[\|	1]
■	AUTOMATED SYSTEM STATUS: You can exit programming, choosing whether or not to save the configuration you just performed. 1. set the choice: \unlhd to SAVE and EXIT the programming คロ to EXIT the programming WITHOUT SAVING 2. press the button \mathbf{F} to confirm; at the end the display returns to visualize the automated system status: $\begin{array}{l\|l} 10 & =\text { CLOSED } \\ =1 & =\text { OPEN } \\ =1 & =\text { = FAIL SAFE in progress } \\ \text { = } \end{array}$ 2.), all changes made will be lost. You can EXIT programming at any time: press and hold \mathbf{F} and then also - to switch directly to Бし.	——	

5.3 BUS G-WAY DEVICE INSTALLATION

You can add BUS G-WAY devices to the system at any time, proceeding as follows:

1. Cut off the electrical power to the board.
2. Install and set the BUS G-WAY accessories according to the instructions of the devices.
3. Connect the BUSG-WAY devices according to the instructions of Chapter ELECTRICALCONNECTIONS.
4. Power up the board.
5. Complete the procedure for BUS G-WAY device entry.

5.3.1 BUS G-WAY DEVICE ENTRY

1. Access BASIC programming and scroll through the functions up until $\square\llcorner$. When F is released, the display will show the BUS G-WAY devices status (see the figure).
2. Perform the entry: simultaneously press and hold + and - for at least 5 sec (during this time, the display will blink).
3. \bigsqcup will appear as a confirmation of entry completion.
4. Release the + and - buttons. The status of the BUS G-WAY devices will be displayed.
[^0]Fig. Visualising the BUS G-WAY status in the function $\square\llcorner$: each segment of the display shows one type of device.

Fig. examples of BUS G-WAY status visualization on display.

In STAND BY (gate closed and in stand-by) with BUS G-WAY Encoder on leaf 1 and leaf 2 and BUS G-WAY Photocells correctly connected and entered.

In case of BUS G-WAY Encoder on leaf1 and leaf 2 and BUS G-WAY Photocells correctly connected and entered and with closing photocells engaged:

Checking the securing devices entered on the board

To verify the types of BUS device recognised through the entry:

1. Press and hold the + button during stand-by visualisation; the segments corresponding to at least one entered device will go ON. E.g.:
at least one pair of opening
photocells correctly entered
To check the condition of the BUS G-WAY connection, verify the LED on the board:
LED DL15 (Red)

ON	Safety device engaged or pulse generator active
OFF	NO safety device engaged neither pulse generator active

LED DL14 (Green)

ON steady	Normal activity (led ON even if there are no devices).
Slow blinking (blink every 2,5 sec)	BUS G-WAY line short-circuit.
Rapid blinking (blink every 0.5 sec)	Error in the BUS G-WAY connection. Repeat the device entry. If the error occurs again, check: - That there are no more than one device in the system with the same address. - Calling error (number > or < the connected BUS devices). - FAIL SAFE error on the BUS device.
OFF	Board in Sleep mode (if used).
BRAIN 17	28

5.4 TIME LEARNING - SETUP

When the board is powered, if a SETUP has never been performed, or if the board requests it, on the display \square indicates that a SETUP must be performed.

During SETUP, the connected BUS G-WAY accessories are always entered. The BUS G-WAY encoders entered by the SETUP must always be enabled using the parameter ЕП (BASIC Programming).

For SETUP, proceed as follows:

\triangle
 During SETUP all safety devices are disabled! Therefore, carry out the operation avoiding any transit in the leaf movement area.

If a system without an encoder is installed, mechanical stops will be required for the leaves.

1. Enter BASIC programming and go to the parameter L, when F is released ${ }^{-\infty}$ will appear.
2. Ensure that the gate leaves are closed. Otherwise, proceed as follows:

- Press and hold -/R2 to close leaf 2
- Press and hold +/R1 to close leaf 1

Should pressing +/R1 and/or -/R2 command opening of the corresponding leaf, cut off power and, on terminal board J2, invert the phase cables of the corresponding motor (terminals 2-3 for leaf 1 motor and terminals 5-6 for leaf 2 motor).
3. With the gate leaves closed, launch SETUP by pressing and holding + and $\boldsymbol{-}$ until ■.l $_{\text {l }}$ begins to flash on the display (about 3 sec).
4. Release $+e$ - Leaf 1 begins its opening movement.

Operation WITHOUT Encoder

Stop movement by sending an OPEN A pulse as soon as leaf 1 reaches the contact point.

Operation WITH Encoder

Leaf 1 will stop as soon as it reaches the contact point. It will in any case be possible to stop leaf movement at any time and in the desired point by sending an OPEN A pulse.
5. On the display \sqsupset will flash (only if 2 motors have been selected): leaf 2 begins opening.

Operation WITHOUT Encoder

Stop movement by sending an OPEN A pulse as soon as leaf 2 reaches the contact point.

Operation WITH Encoder

Leaf 2 will stop as soon as it reaches the contact point. It will in any case be possible to stop leaf movement at any time and in the desired point by sending an OPEN A pulse.

Steps 4 and 5 with function $F A$:

$\mathrm{FA}=\mathrm{I}$ ((the limit switch determines the stopping of motion) the OPEN A pulse for stopping motion is ignored.
$F A=\square \beth$ (the limit switch determines the start of deceleration) send an OPEN A pulse only after involving the opening limit switch.
6. On the display $\sqsupset \sqsupset$ will flash (only if 2 motors have been selected): leaf 2 begins closing.

Operation WITHOUT Encoder

Stop movement by sending an OPEN A pulse as soon as leaf 2 reaches the contact point.

Operation WITH Encoder

Leaf 2 will stop as soon as it reaches the contact point. It will in any case be possible to stop leaf movement at any time and in the desired point by sending an OPEN A pulse.
7. On the display Б flashes: leaf 1 begins closing.

Operation WITHOUT Encoder

Stop movement by sending an OPEN A pulse as soon as leaf 1 reaches the contact point.

Operation WITH Encoder
Leaf 1 will stop as soon as it reaches the contact point. It will in any case be possible to stop leaf movement at any time and in the desired point by sending an OPEN A pulse.

Steps 6 and 7 with function $F[$:

$F[=\square \mid$ (the limit switch determines the stopping of motion) the OPEN A pulse for stopping motion is ignored.
F[= ■ (the limit switch determines the start of deceleration) send an OPEN A pulse only after involving the closing limit switch.
8. The board will automatically exit the programming menu and will display the automated system status () in to confirm that the SETUP procedure has been completed correctly. If the procedure is not completed correctly, on the display $\square \square$ will start flashing, indicating that a new SETUP procedure must be performed.

The deceleration spaces can be configured and modified from the display using the parameters $\ulcorner\mid$ and Γ 』 (see Advanced Programming) without repeating the SETUP.

5.5 TESTING THE AUTOMATED SYSTEM

Once installation and programming is completed, ensure that the system is operating correctly. Be especially careful that the safety devices operate correctly and ensure that the system complies with all current safety regulations. Close the cover in the provided seat with gasket.

6. MEMORISING THE RADIO CODE

The control board features an integrated 2-channel decoding system. This system lets you memorise, using an additional receiver module (on J5 connector) and more radio controls having different technology but the same frequency. You can thus control both total opening (OPEN A) and partial opening (OPEN B).
The different types of radio code (JLC, RC) can coexist simultaneously on the two channels. You can enter up to 255 radio codes divided between OPEN A and OPEN B/CLOSE.
To use different encoding systems on the same channel, you must complete the learning of each encoding system and then repeat the procedure for the other one.

\triangleKeep the remote control at least 30 cm from the receiver.

6.1 MEMORISING THE JLC RADIO CONTROLS

1. Press and hold +/R1 - SW1 (OPEN A programming) or -/R2 - SW2 (OPEN B/CLOSE programming).

- After keeping the button pressed for about 5 sec , the corresponding radio LED (DL11 or DL12) will begin to flash slowly for about 20 sec .

2. Release the button.
3. Simultaneously press and hold P1 and P2 on the JLC radio control (only MASTER radio control).

- The radio control LED will begin to flash.

4. Release both buttons.

- Ensure that LED DL11 or DL12 on the board is still flashing (see point 2) and, while the radio control LED is still flashing, press and hold the desired button on the radio control (the radio control LED will go on steady).
- The corresponding LED on the board (DL11 or DL12) will go on steady for 1 sec and then go off, indicating that memorisation has been completed.

5. Release the radio control button.
6. To complete memorisation, press the button of the memorised radio control twice in succession.

- The automated system will perform an opening cycle.

Ensure that there are no obstacles (by people or things) during the automated system movement.

To enable other radio controls with the same system code, you must transfer the system code of the memorised radio control button to the button corresponding to the radio control you wish to add:

1. Simultaneously press and hold P1 and P2 on the memorised radio control.

- The radio control LED will begin to flash.

2. Release both buttons.
3. Press and hold, while the radio control LED is still flashing, the memorised button (the radio control LED will go on steady).
4. Bring the radio controls close together, press and hold the corresponding button of the radio control you wish to add, and release only after the radio control LED flashes twice, indicating that memorisation has been completed.
5. Press the button of the memorised radio control twice in succession.

- The automated system will perform an opening cycle.

Ensure that there are no obstacles (by people or things) during the automated system movement.

6.2 MEMORISING RC RADIO CONTROLS (ONLY 433 MHZ)

1. Press and hold +/R1 - SW1 (OPEN A programming) or -/R2 - SW2 (OPEN B/CLOSE programming).

- After keeping the button pressed for about 5 sec , the corresponding radio LED (DL11 or DL12) will begin to flash slowly for about 20 sec .

2. Release the button.
3. During radio LED flashing, press the desired button of the RC radio control.

- The corresponding LED on the board (DL11 or DL12) will go on steady for 1 second, indicating that memorisation has been completed, and will begin flashing again for another 20 sec during which you can memorise another radio control.
- When the 20 sec have elapsed, the LED will turn off, indicating that the procedure has been completed.

4. To add other radio controls, repeat the procedure from point 1.

6.2.1 REMOTE MEMORISATION OF RC RADIO CONTROLS

With RC radio controls you can remotely memorise other radio controls, i.e. without working directly on the board, using a previously memorised radio control.

1. Take a radio control that has already been memorised on one of the 2 channels (OPEN A or OPEN B/CLOSE) and move to the vicinity of the board.
2. Simultaneously press and hold P1 and P2 until both LEDs flash slowly for 5 sec.
3. Within 5 seconds, press the previously memorised radio control button to activate the learning phase for the selected channel.
4. The LED on the board corresponding to the channel in learning mode will flash for 20 sec within which another radio control code is transmitted by pressing the button.

- The corresponding LED on the board will go on steady for 2 sec (indicating that memorisation has been completed) and will begin flashing again for another 20 sec , during which you can memorise other radio controls, and will finally go off.

6.3 DELETING THE RADIO CONTROLS

This operation CANNOT be reversed. This will delete ALL the radio control codes memorised as both OPEN A and OPEN B/CLOSE. The cancellation procedure is active only in gate status visualisation mode.

1. Press and hold -/R2

- After pressing for about 5 sec , the DL12 LED begins to flash slowly; after another 5 sec of slow flashing and holding, the LEDs DL11 and DL12 begin flashing more rapidly (cancellation has started).
- Once rapid flashing has stopped, LEDs DL11 and DL12 will go on steady, confirming the cancellation of all the radio codes (OPEN A and OPEN B/CLOSE) from the board memory.

2. Release -/R2
 The LEDs will go off, indicating correct cancellation.

7. START-UP

7.1 CHECKING THE LEDs

After having made all the connections and powered the board, check the status of the LEDs in relation to the status of the inputs (the Figure shows the condition of closed automated system).

STOP - In default configuration, the STOP input is a safety input with contact N.C. (Normally Closed). The corresponding LED must be ON with the automated system at rest and go off when the connected device is activated.
OPEN A, OPEN B - In default configuration, the OPEN A, OPEN B inputs are inputs with contact N.O. (Normally Open). The corresponding LEDs must be OFF when the automated system is at rest, and go ON when the connected device is in use.
Led ERROR - FLASHING = there is an alarm in progress (situation that does not compromise gate operation) - see "ALARMS". ON STEADY = there is an error in progress (situation that blocks operation until the cause of the fault has been eliminated). See "ERRORS".
LEDs FCA1, FCC1, FCA2, FCC2 - show the status of the limit switches N.C. contacts.

LED	Name	ON (closed contact)	OFF (open contact)	with TIMECODER
DL4	FCA1	OPEN limit switch clear	OPEN limit switch engaged	Flashing simultaneously during movement of leaf 1. When the love
DL3	FCC1	CLOSE limit switch clear	CLOSE limit switch engaged	be either on or off
DL2	FCA2	OPEN limit switch clear	OPEN limit switch engaged	Flashing simultaneously during movement of leaf 2. When the
DL1	FCC2	CLOSE limit switch clear	CLOSE limit switch leaf is stationary, they can both engaged	beither on or off

8．SIGNALLING ERRORS AND ALARMS

In case of ERRORS（conditions that stop gate operation）or ALARMS（conditions that do not compromise gate operation）the display will show the number corresponding to the warning in progress by simultaneously pressing $\boldsymbol{+}$ and - ．
These warnings will disappear in the following cycle only if the situation causing them is removed．

8．1 ERRORS

When there is an ERROR the ERROR LED will go on steady．By simultaneously pressing ＋and $\boldsymbol{-}$ the display will show the corresponding error number．

The following table contains all the errors that can be viewed on the display．

N°	ERROR	SOLUTION
$\square 1$	Board broken	Replace the board
口 5	Invalid SETUP	Repeat board SETUP
O日	BUS G－WAY device error	Ensure that no two pairs of devices have the same address．
\bigcirc	BUS G－WAY output short－circuit	Check the connections of the connected and entered BUS G－WAY devices
1 コ	BUS G－WAY call	Ensure that the BUS devices are operating correctly and，if necessary，repeat BUS device acquisition
$1 \exists$	FAIL SAFE	Check that the safety devices（photocells）are operating cor－ rectly
14	Configuration error	Check that the board is configured correctly（basic and advanced programming）and，if necessary，repeat SETUP
17	Motor 1 encoder fault	Check the connections or replace motor 1 encoder
$1 日$	Motor 2 encoder fault	Check the connections or replace motor 2 encoder
19	Incorrect memory data	Repeat BUS G－WAY device entry and／or re－program the board

8．2 ALARMS

When there is an ALARM the ERROR LED will begin to flash．By simultaneously pressing＋ and－the display will show the corresponding alarm number．

The following table contains all the alarms that can be viewed on the display．

N°	ALARM	Solution／Description
こ \square	Obstacle on MOTOR 1 （only with encoder）	Remove any possible obstacle on leaf 1
こ1	Obstacle on MOTOR 2 （only with encoder）	Remove any possible obstacle on leaf 2
こら	LOCK 1 output short－circuit	Remove the cause of the short－circuit
こ	Nr ．of consecutive obstacles exceeded during opening	Remove any possible obstacle． Should the problem persist，repeat SETUP
こ日	Nr ．of consecutive obstacles exceeded during closing	Remove any possible obstacle． Should the problem persist，repeat SETUP
$\exists \square$	RQFZ radio code memory full	Cancel the radio codes．
Э1	Breach alarm	A movement was made with the automated system in status Perform an operation cycle．

9．TROUBLESHOOTING

	Description	Solution
A	The board does not turn on	－Ensure that the board is receiving the 230V～ －Ensure that fuse F1 is intact
B	The gate will not open after an OPEN pulse	－Check that the safety devices and STOP are connected to the negative and ensure that the corresponding LEDs are ON －Check the photocells（alignment，engagement） －Check that the SETUP has been completed correctly． Repeat if necessary
C	The gate does not reverse when the photocells are engaged	－Check that the traditional photocells are correctly wired and that the BUS photocell configuration is correct（if present）． If necessary，repeat the acquisition of the BUS G－WAY devices
D	The gate does not reverse when encountering an obstacle	－Ensure that the encoders on motors are enabled －Check the obstacle detection sensitivity
E	The gate will not close	－Check that the photocell wiring and alignment is correct －Check that there is no OPEN signal active －Check which function logic has been chosen（automatic or semi－automatic）

10. MANAGING THE CONFIGURATION FILE - J8 USB

Using the J8 USB connector you can both transfer to the board the configuration and management files from a USB drive and copy the same files stored on the board to the USB memory. When transferring from the USB memory to the board, the files must be located in the memory root, as shown in the screenshot below:
In addition, the names and extensions of the various files must be as follows:

- BRN17SW.bin - The board SOFTWARE update file
- BRN17.prg - The board PROGRAMMING update file
- BRN17.rad - The board RADIO update file

These files will be generated, named and placed as shown in fig. in case of transfer from the board to the USB memory.
If at board power up a USB memory is detected inserted in the board J8 connector, after displaying the writing $\square \square$, it will be possible to access the update file management menu (see the following table) (press F for scrolling through the functions) :

Display	Function	Default
1䟚	BOARD SOFTWARE UPGRADE: This function lets you update the board application (file BRN17SW.bin). If + and - are pressed simultaneously for at least 5 seconds, you will access the board update. The writing $\mathrm{C} \mathrm{\square}$ will disappear and, in its place, the writing - - and the USB DL10 LED will begin flashing. Once updating is completed, \unlhd will be displayed if it has been done correctly, otherwise the writing $\cap \square$ will appear again. The upgrade is carried out correctly only if the USB memory contains a valid file named exactly BRN17SW.bin	- -

Display	Function	Default
1_11	BOARD CONFIGURATION UPGRADE: This function lets you transfer the configuration to the board (file BRN17.prg). If + and - are pressed simultaneously for at least 5 seconds, you will access the board configuration update. The writing $\cap \square$ will disappear and, in its place, the writing - - and the USB DL10 LED will begin flashing. Once updating is completed, $ل$ will be displayed if it has been done correctly, otherwise the writing $\cap \square$ will appear again. The upgrade is carried out correctly only if the USB memory contains a valid file named exactly BRN17.prg	-
I_1-	RADIO CODE LIST UPGRADE: This function lets you update the radio code list on the board (file BRN17.rad). If + and - are pressed simultaneously for at least 5 seconds, you will access the board update. The writing ח口 will disappear and, in its place, the writing - - and the USB DL10 LED will begin flashing. Once updating is completed \unlhd will be displayed if it has been done correctly, otherwise the writing $\cap \square$ will appear again. The upgrade is carried out correctly only if the USB memory contains a valid file named exactly BRN17.rad	- -

Display	Function	Default	
口に	BOARD CONFIGURATION DOWNLOAD： This function lets you save the board configuration in the USB memory in order to store（parameter $\square 1$ ）or copy the configuration to other systems （parameter If + and - are pressed simultaneously for at least 5 seconds，the following selection values will appear： TII＝Storage：the configuration file will be saved in the format BRN17＿xxx．prg where $x x x=000 / 001 / 002$ etc．depending on how many configuration files there are in the USB memory． 미＝Copy：the configuration file will be saved in the format BRN17．prg by overwriting any other configuration file present with the same name，so it can be used to upgrade another system． Press + and－to select the desired parameter and，by pressing F，the board will proceed to save the file and display \bigsqcup when done correctly，or $\cap \square$ in case of errors during saving．	－－	
■1	BOARD RADIO CODE DOWNLOAD： This function lets you save in the USB memory the board radio codes in order to store（parameter $\square \\|$ ）or copy the radio codes to other systems（parameter If + and－are pressed simultaneously for at least 5 seconds，the following selection values will appear： ［1］＝Storage：the radio codes file will be saved in the format BRN17＿xxx．rad where $x x x=000 / 001 / 002$ etc．depending on how many radio codes files there are in the USB memory． 미＝Copy：the radio codes file will be saved in the format BRN17．rad by overwriting any other radio codes file present with the same name，so it can be used to upgrade another system． Press + and - to select the desired parameter and，by pressing F ，the board will proceed to save the file and display \bigsqcup when done correctly，or $\operatorname{\square 口}$ in case of errors during saving．	－－	

11. FUNCTION LOGICS

This table summarizes the function logics.
For a detailed description of each one, see the queued Tables.

	LOGIC	Automated system status: stopped	Automated system status: in motion	Status: photocell involvement
E	Semiautomatic	An OPEN pulse opens the gate and the following one will close it	An OPEN pulse while opening stops and reopens during closing	During motion, the photocells reverse
EP	Semiautomatic, Step-by-Step	An OPEN pulse opens the gate and the following one will close it	An OPEN pulse during motion blocks	During motion, the photocells reverse
SP	Automatic Safety Step-by-Step	An OPEN pulse opens the gate and closes automatically after the pause time	An OPEN pulse during pause closes and during motion blocks the operation	The closing photocells reclose the gate during pause; they memorise closing during opening and immediately reverse during closing
A	Automatic	An OPEN pulse opens the gate and closes automatically after the pause time	An OPEN pulse during opening is ignored, during pause it recharges the pause time and during closing it reopens the leaves	The closing photocells recharge the pause time
AP	Automatic Step-by-Step	An OPEN pulse opens the gate and closes automatically after the pause time	An OPEN pulse during opening and during pause blocks the operation; it reverses during closing	The closing photocells recharge the pause time
b	Semiautomatic "b" (OPEN-B inputs become CLOSE)	Logic with two separate commands: OPEN-A pulse opens; CLOSE pulse closes	An OPEN-A pulse during closing opens, a CLOSE pulse during opening closes	During motion, the photocells reverse
C	Dead-man (OPEN-B inputs become CLOSE)	Logic with two separate commands: a held OPEN-A pulse opens; a held CLOSE pulse closes	An OPEN-A pulse during closing opens, a CLOSE pulse during opening closes	During motion, the photocells reverse
BRAIN 17			40	732788 - Rev. A_1

	PULSES						
SYSTEM STATUS	OPEN A	OPEN B	CLOSE	STOP	FSW OP	FSW CL	FSW CLIOP
CLOSED	OPENS	OPENS PARTIALLY	NO EFFECT	NO EFFECT (C	v DISABLED)	NO EFFECT	NO EFFECT (OPEN DISABLED)
OPENING	STOPS* $\1	STOPS*	CLOSES	STOPS*	REVERSES	NO EFFECT	STOPS; OPENS AT RELEASE (OPEN STOPS* SAVES CLOSE)
OPEN	Closes $\mathbb{1}^{1}$			NO EFFECT (OPEN/CLOSE DISABLED)	NO EFFECT	$\begin{aligned} & \text { NO EFFECT } \\ & \text { (CLOSE } \\ & \text { DISABLED) } \\ & \hline \end{aligned}$	NO EFFECT (OPEN/ CLOSE DISABLED)
CLOSING			NO EFFECT	STOPS*	NO EFFECT	REVERSES $\$ 1^{2}$	STOPS; OPENS AT RELEASE (OPEN STOPS* SAVES CLOSE)
STOPPED		CLOSES		NO EFFECT (OPEN/CLOSE DISABLED)	$\begin{aligned} & \text { NO EFFECT } \\ & \text { (OPEN } \\ & \text { DISABLED) } \end{aligned}$	NO EFFECT (CLOSE DISABLED)	$\begin{gathered} \text { NO EFFECT } \\ \text { (OPEN STOPS } \\ \text { SAVES CLOSE) } \end{gathered}$

EP SEMI-AUTOMATIC "STEP-BY-STEP" LOGIC

	PULSES						
SYSTEM STATUS	OPEN A	OPEN B	CLOSE	STOP	FSW OP	FSW CL	FSW CLIOP
CLOSED	OPENS	OPENS PARTIALLY	NO EFFECT	NO EFFECT (OPEN DISABLED)		NO EFFECT	NO EFFECT (OPEN DISABLED)
OPENING	STOPS* $\1	STOPS*	CLOSES	STOPS*	REVERSES	NO EFFECT	STOPS; OPENS AT RELEASE (OPEN STOPS* SAVES CLOSE)
OPEN	CLOSES $\mathbb{4}^{1}$	CLOSES		NO EFFECT (OPEN/CLOSE DISABLED)	NO EFFECT	NO EFFECT (Close DISABLED)	NO EFFECT (OPEN/ CLOSE DISABLED)
CLOSING	STOPS*		NO EFFECT	STOPS*	NO EFFECT	REVERSES \mathbf{L}^{2}	STOPS; OPENS AT RELEASE (OPEN STOPS* - SAVES CLOSE)
STOPPED	RESTARTS MOVING IN THE OPPOSITE DIRECTION. ALWAYS CLOSES AFTER STOP		CLOSES	NO EFFECT (OPEN/CLOSE DISABLED)	NO EFFECT (OPEN DISABLED)	NO EFFECT (CLOSE DISABLED)	NO EFFECT (OPEN STOPS SAVES CLOSE)

\$1 if the cycle began with OPEN-B, opens totally $\$ 2$ operation can be modified by programming

A
AUTOMATIC LOGIC

	PULSES						
SYSTEM STATUS	OPEN A	OPEN B	CLOSE	STOP	FSW OP	FSW CL	FSW CLIOP
CLOSED	\qquad	OPENS PARTIALLY; CLOSES AFTER PAUSE TIME	NO EFFECT	NO EFFECT (O	DISABLED)	NO EFFECT	$\begin{gathered} \text { NO EFFECT } \\ \text { (OPEN DISABLED) } \end{gathered}$
OPENING	NO EFFECT 4^{1}	NO EFFECT	CLOSES	STOPS*	REVERSES	NO EFFECT	STOPS; OPENS AT RELEASE (SAVES CLOSE)
OPEN IN PAUSE	RECHARGES PAUSE TIME \mathbb{L}^{1}	RECHARGES PAUSE TIME	CLOSES	STOPS*	NO EFFECT	PAUSE TIME	HARGES (close disabled)
CLOSING		ENS	NO EFFECT	STOPS*	NO EFFECT	REVERSES $\mathbf{1 2}^{2}$	STOPS; OPENS AT RELEASE (SAVES CLOSE)
*STOPPED		CLOSES		NO EFFECT (OPEN/CLOSE DISABLED)	$\begin{aligned} & \text { NO EFFECT } \\ & \text { (OPEN } \\ & \text { DISABLED) } \end{aligned}$	NO EFFECT (CLOSE DISABLED)	NO EFFECT (OPEN/ CLOSE DISABLED)

\$1 if the cycle began with OPEN-B, opens totally $\$ 2$ operation can be modified by programming

	PULSES						
SYSTEM STATUS	OPEN A	OPEN B	CLOSE	STOP	FSW OP	FSW CL	FSW CLIop
CLOSED	OPENS; CLOSES AFTER PAUSE TIME	OPENS PARTIALLY; CLOSES AFTER PAUSE TIME	NO EFFECT	NO EFFECT (O	EN DISABLED)	NO EFFECT	$\begin{aligned} & \text { NO EFFECT (OPEN } \\ & \text { DISABLED) } \end{aligned}$
OPENING	STOPS* $\1	STOPS*	CLOSES	STOPS*	REVERSES (SAVES OPEN)	NO EFFECT	STOPS; OPENS AT RELEASE (OPEN STOPS* SAVES CLOSE)
OPEN IN PAUSE	STOPS* ${ }^{1}$	STOPS*	CLOSES	STOPS*	NO EFFECT	PAUSE TIME	ECHARGES (CLOSE DISABLED)
CLOSING	OPE	ENS	NO EFFECT	STOPS*	NO EFFECT	REVERSES $\mathbf{\$ 2}^{2}$	STOPS; OPENS AT RELEASE (OPEN STOPS* - SAVES CLOSE)
*STOPPED		CLOSES		NO EFFECT (OPEN/CLOSE DISABLED)	$\begin{aligned} & \text { NO EFFECT } \\ & \text { (OPEN } \\ & \text { DISABLED) } \end{aligned}$	NO EFFECT (Close DISABLED)	NO EFFECT (OPEN/ CLOSE DISABLED)

\square SEMI-AUTOMATIC "B" LOGIC (OPEN-B INPUTS BECOME CLOSE)

	PULSES						
AUTOMATED SYSTEM StATUS	OPEN A	OPEN B	CLOSE	STOP	FSW OP	FSW CL	FSW CLIop
CLOSED	OPENS	NO EFFECT		$\begin{gathered} \text { NO EFFECT } \\ \text { (OPEN DISABLED) } \end{gathered}$		NO EFFECT	NO EFFECT (OPEN DISABLED)
OPENING	NO EFFECT	CLOSES		STOPS*	REVERSES	NO EFFECT	STOPS; CLOSES AT RELEASE (SAVES OPEN/CLOSE)
OPEN	NO EFFECT	CLOSES		NO EFFECT (OPEN/CLOSE DISABLED)	NO EFFECT	$\begin{aligned} & \text { NO EFFECT } \\ & \text { (CLOSE } \\ & \text { DISABLED) } \\ & \hline \end{aligned}$	NO EFFECT (OPEN/ CLOSE DISABLED)
CLOSING	OPENS	NO EFFECT		STOPS*	NO EFFECT	REVERSES ${ }^{2}$	STOPS; OPENS AT RELEASE (SAVES OPEN/CLOSE)
*STOPPED	OPENS	CLOSES		NO EFFECT (OPEN/CLOSE DISABLED)	$\begin{aligned} & \text { NO EFFECT } \\ & \text { (OPEN } \\ & \text { DISABLED) } \end{aligned}$	$\begin{aligned} & \text { NO EFFECT } \\ & \text { (CLOSE } \\ & \text { DISABLED) } \end{aligned}$	NO EFFECT (OPEN/ CLOSE DISABLED)

\$1 if the cycle began with OPEN-B, opens totally $\$ 2$ operation can be modified by programming

DEAD-MAN LOGIC (OPEN-B INPUTS BECOME CLOSE)

	DEAD-MAN COMMANDS			PULSES			
SYSTEM STATUS	OPEN A	OPEN B	CLOSE	STOP	FSW OP	FSW CL	FSW CLIop
CLOSED	OPENS	NO EFFECT		$\begin{gathered} \text { NO EFFECT } \\ \text { (OPEN DISABLED) } \end{gathered}$		NO EFFECT	NO EFFECT (OPEN DISABLED)
OPENING	NO EFFECT	CLOSES		STOPS*	REVERSES	NO EFFECT	$\begin{gathered} \text { STOPS; CLOSES AT } \\ \text { RELEASE } \\ \text { (SAVES OPEN/CLOSE) } \end{gathered}$
OPEN	NO EFFECT	CLOSES		NO EFFECT (OPEN/CLOSE DISABLED)	NO EFFECT	NO EFFECT (CLOSE DISABLED)	NO EFFECT (OPEN/ CLOSE DISABLED)
CLOSING	OPENS	NO EFFECT		STOPS*	NO EFFECT	REVERSES $\mathbf{\$ 2}^{2}$	STOPS; OPENS AT RELEASE (SAVES OPEN/CLOSE)
*STOPPED	OPENS	CLOSES		NO EFFECT (OPEN/CLOSE DISABLED)	$\begin{aligned} & \text { NO EFFECT } \\ & \text { (OPEN } \\ & \text { DISABLED) } \end{aligned}$	NO EFFECT (CLOSE DISABLED)	NO EFFECT (OPEN/ CLOSE DISABLED)

GeNiபs

Sede legale / Registered office: FAAC SpA - Via Calari, 10
40069 Zola Predosa (BO) - Italy Tel. + 3905161724 - Fax. +39 051758518 Supporto tecnico Italia: 0516172505

[^0]: If no BUS device has ever been entered in the board, the display will read III.

 ## Opening photocells:

 ON = entered and engaged

 Opening photocells and Closing photocells: $\mathrm{ON}=$ entered and engaged

 Closing photocells:
 ON = entered and engaged

