5. START-UP

5.1. CONNEC TION TO ELEC TRONIC CONIROL UNIT

 Waming: Always tum off the electricity supply before carying out any work on the electronic control unit (connections, programming, maintenance). Waming: When terminal board J2 is disconnected, high voltage remains on the outputs of the capacitor, motorand transformer power supplies.Observe points $10,11,12,13$ and 14 in the GENERALSAFETY INSTRUCTIONS.
As shown in Fig. 2, prepare the conduits and make the electric al connectionsfrom the 826 MPS electronic control unit to the chosen accessories.

Always route the powersupply cablessepa rately from the control and safety cables (keyswitch, receiver, photocells, etc.). Use separate conduits to avoid any interference.

TABLE 2 TEC HNICALCHARAC TERISTICSOF 826 MPS

POWER SUPPLY	$230 \mathrm{~V}(+6-10 \%) 50 \mathrm{~Hz}$
MAX. MOTOR LOAD	600 W
MAX. ACCESSORIESLOAD	500 mA
MAX. WARNING LAMP POWER	$5 \mathrm{~W}(24 \mathrm{Vac})$
TEMPERATURERANGE	$-20^{\circ} \mathrm{C}+55^{\circ} \mathrm{C}$

TABLE3 ACCESSO RIESCURRENTDRAW

TYPE OFACCESSORY	NOMINALCURRENTDRAW
R 31	50 mA
PLUS 433 E	20 mA
MINIDEC SL/ DS	6 mA
DECODER SL/ DS	$20 \mathrm{~mA} / 55 \mathrm{~mA}$
RP 433 ESL/ EDS	$12 \mathrm{~mA} / 6 \mathrm{~mA}$
DIGICARD	15 mA
METALDIGIKEY	15 mA
FOTO SWITCH	90 mA
DETEC TOR F4 / PS6	50 mA
MINIBEAM	70 mA

5.1.1. 826 MPS CONTROL UNIT

Fig. 22
Table $4 \mathbf{8 2 6}$ MPS c ontrol unit components

LD1	OPEN LED
LD2	PARTIALOPEN/CLOSELED
LD3	STOP LED
L4	SAFETY LED
L55	LIMITSWITC HALARM LED
L6	OPENING LIMITSWITC H LED
LD7	CLOSURE LMMITSWITC H LED
L88	SLIDING SPEED LED
P1	OPENING LMITSWITC H PROGRAMMING BUTTON
P2	CLOSURE LIMITSWITC H PROG RAMMING BUTTON
P3	LIMITSWITC H/ RESETPROG RAMMING BUTTON
J1	DECODER CONNECTOR
J2	LOW VOLTAGE TERMINALBLOCK
J3	ADLCONNECTOR
J4	FAAC LAMP OUTPUTTERMINALBLOCK
J5	CAPACITORCONNECTOR
J6	ELEC TRIC MOTORCONNECTOR
J7	TRANSFORMER PRIMARY CONNEC TOR
J8	TRANSFORMER SEC ONDARY CONNEC TOR
J9	230 Vac POWER SUPPLY TERMINALSTRIP
F1	ELEC TRIC MOTOR FUSE (F 5A)
F2	ACCESSORIES FUSE (T1.6A)
DS1	PROGRAMMING DIPSWITCH

5.1.2. ELEC TRICALCONNECTIONS

5.2. DESCRIPIION OF TERMINAL BLOCK

5.2.1. OPEN (terminals 1-2)

This means a ny control device with a N.O. contact which causes the gate to open when activated. In automatic and semia utomatic logic sit is active forboth opening and closure.

5.2.2. A/C (terminals 1-3)

This means a ny control device with a N.O. contact which causes partial opening of the gate when activated in E1, E2, A1, A2, S1 and S2 logics. In B and C logics it causes the gate to close.

5.2.3. STOP (terminals 1-4)

This means a control device with a N.C. contact which causes the gate status (opening-pause-closure) to be intemupted until the next impulse is sent.
N.B.: If stop devices are not connec ted, jumper terminals 1-4.

5.2.4. SAFETY FX (terminals 5-6)

This meansall devic es(photocells, safety edges, magnetic
loops) with a N.C. contact which stop the movement of the gate when an obstacle ispresent in the area protected by the safety devices.
N.B.: If stop devices are not connected, jumper teminals 5-6.
5.2.5. +- LOW VOLTAGE POWER SUPPLY (teminals 6-7) These are the 24 Vdc terminals to which the accessories must be connected.
Proceed as shown in Table 3 in order not to exceed the maximum permitted load.
5.2.6. LAMP (terminals 8-9-10)

These are the 24 Vac terminals to which the waming lamp must be connected.
Waming lamp operation illustrated in Fig. 24 refers to connection to terminals $8-9$. Connecting the waming lamp to teminals $8-10$ gives inverse operation.

5.2.7. FAAC LAMP (terminals 11-12)

These are the 230 Vac terminals to which the flashing light must be connected.

5.2.8. 230 V MAINS SUPPLY (teminals 13-14)

These are the terminals to which the 230 Vac electricity supply must be connected.
Connect the earth cable to the post as shown in Fig. 23b.

5.2.9. BEHAVIOUROFSAFETY DEVICES

The safety devices operate during closure only. In A1, E1 and S1 logics, intemupting the safety device contactscauses the gate to stop closing and start opening immediately. In

A2, E2 a nd S2 logic sintemupting the sa fety devic e conta cts causesthe gate to stop closing, then to startopening a ga in when the safety devices are released.

5.2.10. ELECTRONIC SAFEIY DEVICE

(models 820 EMC - 860 EMC only)
The operator is equipped with a system which cuts in when it senses a 20% reduction in pinion speed. The device inverts the closing movement and inhibits opening movement. When this safety device cuts in, LED S goes out for a few seconds. Automatic re-closure is inhibited if the electronic anti-c rushing safety has cut in.

5.3. DIPSWTCH SETINGS

N.B.: PRESS THE RESET BUTTON AFIER ALL PROGRAMMING OPERATIONS

(1) Pause times include pre-fla shing.
(2) Pre-flashing commences 5 seconds before the start of each movement.
(3) Waming light connected between 8 and 9 (if connected between 8 and 10, operation is inverted).

Fig. 24

5.4. OPERATION IN VARIOUSLOGICS

TABLE 5 LOGIC E1 (SEMIAUTOMATIC)

LOGIC EI	IMPULSES		
GATE STATUS	OPEN - A/C (1) -	STOP	SAFETY
CLOSED	opens (2)	no effect	no effect
OPEN	recloses (2	no effect	no effect
CLOSING	inverts motion	stops	inverts motion
OPENING	stops	stops	no effect
STOPPED	recloses (reopens when safety devices are engaged) (2)	no effect	no effect

TABLE 6 LOGIC E2 (SEMIAUTOMATIC)

LOGIC E	IMPULSES		
GATE STATUS	OPEN -A/C(1)-	STOP	SAFETY
CLOSED	Opens (2)	no effect	no effect
OPEN	recloses (2)	no effect	no effect
CLOSING	inverts motion	stops	stops and inverts motion when disengaged (2)
OPENING	stops	stops	no effect
STOPPED	recloses (reopens when safety devices are engaged) (2)	no effect	no effect

TABLE 7 LOG IC A1 (AUTOMATIC)

LOGIC A1	IMPULSES		
GATE STATUS	OPEN - A/C (1) -	STOP	SAFETY
CLOSED	opens and recloses after pause time (2)	no effect	no effect
OPEN	recloses after 5 (3)	stops counting	freezes pause until disengagement
CLOSING	inverts motion	stops	inverts motion
OPENING	no effect	stops	no effect
STOPPED	recloses (2)	no effect	no effect

TABLE 8 LOG IC A2 (AUTOMATIC)

LOGIC A2	IMPULSES		
GATE STATUS	OPEN - A/C (1) -	STOP	SAFETY
CLOSED	opens and recloses after pause time (2)	no effect	no effect
OPEN	recloses after 5 s (3)	stops counting	recloses after 5 s
CLOSING	inverts motion	stops	stops and inverts motion when disengaged (2)
OPENING	no effect	stops	no effect
STOPPED	recloses (2)	no effect	no effect

TABLE 9 LOG IC S1 (SAFETY)

LOGIC S1	IMPULSES		
GATE STATUS	OPEN - A/C (1) -	STOP	SAFETY
CLOSED	Opens and recloses after pause time (2)	no effect	no effect
OPEN	recloses immediately (2 and 3)	stops counting	recloses after 5 s
CLOSING	inverts motion	stops	inverts motion
OPENING	inverts motion	stops	no effect
STOPPED	recloses (2)	no effect	no effect

TABLE 10 LOGIC S2 (SAFETY)

LOGIC $\boldsymbol{\Omega} \mathbf{2}$	IMPULSES		
GATE STATUS	OPEN - A/C (1) -	STOP	SAFETY
CLOSED	opens and recloses after pause time (2)	no effect	no effect
OPEN	recloses immediately (2 and 3)	stops counting	freezes pause until disengagement
CLOSING	inverts motion	stops	stops and inverts motion when disengaged (2)
OPENING	inverts motion	stops	no effect
STOPPED	recloses (2)	no effect	no effect

TABLE 11 LOG IC B (SEMIAUTOMATIC)

LOGIC B	IMPULSES			
GATE STATUS	OPEN	A/C (5)	SAFETY (until disengagement)	STOP
CLOSED	opening (2)	no effect	no effect	no effect
OPEN	no effect	closing (2)	inhibits closing	no effect
CLOSING	no effect	no effect	stops	stops movement
OPENING	no effect	no effect	no effect	stops movement
STOPPED	completes opening (2)	completes opening (2)	inhibits closing	no effect

TABLE 12 LOGIC C (DEADMAN)

LOGIC C	IMPULSES			
GATE STATUS	OPEN (4)	A/C (4 and 5)	SAFETY (until disengagement)	STOP
CLOSED	opens	no effect	no effect	no effect
OPEN	no effect	closes	inhibits closing	no effect
CLOSING	no effect		stops	stops
OPENING		no effect	no effect	stops
STOPPED	completes opening	completes closing	inhibits closing	no effect

(1) The A / C input enables partial opening.
(2) With pre-flashing selected movement starts after 5 seconds.
(3) If the impulse issent a fterpre-fla shing the timerrec ounts.
(4) Foroperation in C logic keep the pushbutton depressed. Movement stops upon release.
(5) The A/C input controls closure.

5.5. PROGRAMMING UMITSWTCHES

IMPORTANT: CHECK THE LENGTH OF THE GATE. THE OPERATOR HAS A UMIT SWITCH SYSTEM WHICH AШOWS FOR AUTO MATION OF GATES WITH A MAXIMUM LENG TH OF 13 m FOR MODELS 820 (Z 20 PINION) AND 10 m FOR MODELS 860 (Z16 PINION).
FAILURE TO OBSERVE THESE RECOMMENDATONS WILL ADVERSELY AFFECT OPERATIO N OF THE ADL LIMIT SWITCH.

1) To facilitate installation, it is advisable to program the control unit in E1 logic (semi-a utomatic) by positioning the relative dipswitches as follows:

SWI - SW2 - SWB to ON.

It is also advisable to inhibit pre-flashing by positioning dipswitch SW7 to OFF.

2) Position dipswitch SW8 according to the direction in which the gate closes (see Fig. 25) (Rack applic ation).
IMPORTANT: In cha in a pplic ations the dipswitc h SW8 must be positioned to ON forclosure to left a nd OFF for closure to right.
The positions of dipswitches SW4, SW5 and SW6 have no effect.
3) Move the gate manually to its mid-travel position.
4) Switch on the electricity supply to the system and check that the status of the LEDs is as follows:

LED ON	LED OFF
ADL - FCA - FCC	OPEN - A/C -
S(860) - STOP - FSW	S (820)

IMPORIANT: MAKE SURE THAT THE GATE IS AT ITS MIDTRAVEL POSITION.
5) Remove the safety tab asillustrated in Fig. 26 and keep it for future maintenance work.
6) Open the gate until it is just a few centimetres away from the open position end stop.

Fig. 26
7) Without moving the gate carry out the following operations on the 826 MPS control unit (Fig. 27) in the stated order.
a) hold down FCA.
b) press the RESETbutton for about 1 second. The ADL LED will light up for approximately one second to confirm that the limit switch has been recognised.
c) release the FCA button.

8) Wait for a few seconds, then slide the gate manually until it is a few centimetresfrom the closed position end stop.
9) Without moving the gate carry out the following operations on the 826 MPS control unit (fig. 27) in the stated order.
a) hold down FCC.
b) press the RESETbutton for about 1 second. The ADL LED will light up for approximately one second to confirm that the limit switch has been recognised.
c) release the FCC button.
10) Re-engage the operator by sliding the gate until the release device engages.
11) Send an open impulse and check that the gate opens, performs a brief deceleration, then stops at the programmed open position limit switch.
12) Send a nother impulse and check that the gate closes.
13) To modify limit switch settings, repeat the sequence of operations from point 3) to point 12).
IMPORTANT: If the LED starts fla shing quic kly (0.25 s) during the limit switch setting operations, follow the instructions given in the ALARM CONDIIONS section.
N.B.: Any intemuption in the power supply will not affect memorisation of the limit switch positions.

If during a manual operation the gate is moved beyond the memorised limit switch positions, a series of open impulses must be sent to move the gearmotorto the zone of normal operation.

